

VI. CONCLUSIONS

One of the purposes of this paper has been to offer a dynamic approach to the theoretical determination of the well-known cylindrical, or dipolar, plasma resonance frequency. Computations illustrate (see Table III) that there is agreement within 3 per cent between the dynamic and quasi-static approaches when the value of $\beta_0 a$ does not exceed 0.25. It is shown that a small-argument expansion of the Bessel Functions in the dynamic approach yields the quasi-static solution.

The electron sheath, which exists on the outside surface of the positive column, is believed to contribute significantly to the location of the dipolar plasma resonance. Several reasons for this belief are:

1) The value of I_0 , which yields resonance, is affected to a much greater degree by the temperature of the positive column than by the temperature of the mercury-pool (which governs the vapor pressure). See Fig. 2.

2) Selective cooling of a portion of the positive column affects the value of I_0 of that portion to a greater degree than the other parts of the positive column. See Fig. 4 and Table V.

3) Experiment indicates that the electron sheath has a shielding effect between the plasma and the metal waveguide in the experimental setup. Compare Fig. 4 and Fig. 5, and see Table V.

4) The theoretical calculations (see Fig. 1) indicate that the ratio f_p/f_0 depends upon the electron sheath density and thickness.

The correspondence between theory and experiment of the Plasma Guide Microwave Selective Coupler of Steier and Kaufman has been improved considerably by taking into account a) the temperature dependence of I_0 along the axis of the discharge tube, and b) the noneffect of waveguide metal on the calculation of K_{eff} (or f_p). However, a complete theoretical determination of f_p is not possible without information re-

garding the density and thickness of the sheath. This information is not available at this time.

VII. ACKNOWLEDGMENT

The author is indebted to Dr. W. D. Hershberger, Professor of Engineering, University of California, Los Angeles, for his assistance and encouragement. He is also indebted to U.C.L.A. for the opportunity to perform post-doctoral experiments which yielded Figs. 2, 4, and 5, and for the preparation of the illustrations. Finally, appreciation is extended to Loyola University of Los Angeles for its generosity in allowing the author to spend one day a week in the pursuit of post-doctoral work in plasmas.

REFERENCES

- [1] L. Tonks, "Plasma-electron resonance, plasma resonance and plasma shape," *Phys. Rev.*, vol. 38, pp. 1219-1223; June, 1941.
- [2] R. W. Gould, "Experiments on plasma oscillations," *Proc. Linde Conf. on Plasma Oscillations*, Spencer, Ind., June 8-10, 1959; pp. 167-204.
- [3] R. W. Gould, "Study IV, Scattering from a Plasma Column," Plasma Interaction Research Project, California Institute of Technology, December, 1958 to December, 1959, Final Rept.; pp. 12-26.
- [4] W. H. Steier and I. Kaufman, "A plasma guide microwave selective coupler," *IRE TRANS. ON MICROWAVE THEORY AND TECHNIQUES*, vol. MTT-9, pp. 499-506; November, 1961.
- [5] H. H. Skilling, "Fundamentals of Electric Waves," John Wiley and Sons, Inc., New York, N. Y.; p. 238, 1948.
- [6] J. A. Stratton, "Electromagnetic Theory," McGraw-Hill Book Co., Inc., New York, N. Y.; p. 327, 1941.
- [7] J. R. Mentzer, "Scattering and Diffraction of Radio Waves," Pergamon Press, Inc., New York, N. Y.; ch. 3, 1955.
- [8] D. Gabor, E. A. Ash, and E. D. Dracott, "Langmuir's paradox," *Nature*, vol. 176, pp. 916-919; 1955.
- [9] E. Gordon, "Microwave Gaseous Discharge: Plasma Oscillations," Research Lab. of Electronics, M.I.T., Cambridge, Mass., Quarterly Progress Rept., pp. 7-10; January 15, 1957.
- [10] J. H. Battocletti, "Resonances in the Positive Column of a Low Pressure Arc Discharge," Ph.D. dissertation, Dept. of Engineering, University of California, Los Angeles; June, 1961.
- [11] B. Klarfeld, "Characteristics of the positive column of gaseous discharge," *J. Phys., U.S.S.R.*, vol. 5: 2-3, pp. 155-175; 1941.
- [12] L. B. Loeb, "Basic Processes of Gaseous Electronics," University of California Press, Berkeley; pp. 337-338, 1960.
- [13] J. H. Battocletti and W. D. Hershberger, "Resonances in the positive column of a low-pressure arc discharge," *J. Appl. Phys.*, vol. 33, pp. 2618-2624; August, 1962.

Correction

Jesse J. Taub, author of "A New Technique for Multimode Power Measurement," which appeared on pages 496-505 of the November, 1962, issue of these TRANSACTIONS, has called the following to the attention of the *Editor*.

On page 496, the asterisk footnote should have included the following sentence. "This work was supported by the Rome Air Development Center, Griffiss Air Force Base, N. Y., under Contract No AF30(602)-2511."

On page 500, line 10 of Section IV-C, the word "even" should be "odd."